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Abstract

Citizen science is mainstream: millions of people contribute data to a growing array of citizen

science projects annually, forming massive datasets that will drive research for years to

come. Many citizen science projects implement a “leaderboard” framework, ranking the con-

tributions based on number of records or species, encouraging further participation. But is

every data point equally “valuable?” Citizen scientists collect data with distinct spatial and

temporal biases, leading to unfortunate gaps and redundancies, which create statistical and

informational problems for downstream analyses. Up to this point, the haphazard structure

of the data has been seen as an unfortunate but unchangeable aspect of citizen science

data. However, we argue here that this issue can actually be addressed: we provide a very

simple, tractable framework that could be adapted by broadscale citizen science projects to

allow citizen scientists to optimize the marginal value of their efforts, increasing the overall

collective knowledge.

Introduction

In October 2018, Corey traveled to Malaita, Solomon Islands, with the Australian Museum to

conduct a biodiversity assessment with the local Kwaio people (https://australianmuseum.net.

au/blog/amri-news/solomon-islands-ornithology/). While there, he submitted 66 eBird check-

lists, comprising 650 bird observations. He submitted the very first record of Malaita Dwarf-

Kingfisher to the growing database—a database with>600 million observations comprising

approximately 99% of the world’s bird species. Traveling to a remote part of the world to sur-

vey birds was truly a “once-in-a-lifetime” opportunity. But submitting eBird checklists from

his smartphone—one example of a citizen science contribution—was simply part of his daily

routine.

He is not alone. Citizen science is now mainstream, with hundreds of thousands of partici-

pants worldwide contributing observations of the natural world to various citizen science proj-

ects daily. Among the most popular projects, accumulating millions of observations annually,

are those in which citizen scientists record the numbers and types of organisms observed [1,2].
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But what is the difference between submitting an eBird checklist from a remote part of the

world and submitting an eBird checklist while walking the dog near his home in Sydney, as

Corey does most days? Is one inherently more “valuable” to the database than the other? In

this paper, we examine this question, highlighting that not all citizen science observations are

created equal. We argue that there is room for improvement in large-scale citizen science col-

lection schemes and provide a conceptual framework to assign value to citizen science

observations.

Citizen science is mainstream

Citizen science projects—scientific research conducted in whole or in part by people for

whom science is not their profession—are incredibly valuable for society [3], with their impor-

tance to scientific research growing each year [4]. These projects provide educational opportu-

nities [5], increase scientific knowledge [6], and collect immense amounts of raw information

about biodiversity in the world [7,8]. Citizen science data allow larger spatial and temporal

scales for key research questions in many fields, including environmental toxicology, medi-

cine, nutrition, astronomy, and biodiversity research [2,9]. In this essay, we focus on citizen

science projects in which the main intent is to collect broadscale biodiversity data, but the

arguments apply to any citizen science projects that sample in space and time.

Each citizen science project aimed at collecting broadscale biodiversity data falls along a

continuum, from unstructured to structured, based on the objectives, survey design, flexibility,

rigorousness, and detail collected about the observation process [10,11]. Projects with clear

objectives, clearly planned data analysis, and rigorous protocols, for instance, are classified as

structured projects. Conversely, projects with open and flexible recruitment and a general lack

of protocols are classified as unstructured projects [10]. Many projects fall along this contin-

uum and are thus classified as semistructured [10, 11]. Examples of such projects, and their

associated level of structure, include iNaturalist (unstructured; [12]), eBird (semistructured;

[7]), eButterfly (semistructured; [13]), FrogID (semistructured; [14]), and the UK Butterfly

Monitoring Scheme (structured, [15]). Despite their level of structure in data collection, each

of these projects has a specific aim: to collect observations of a unique taxon along with spatial

and temporal data. We define one of these observations as a biodiversity sampling event

(BSE).

A well-known feature of the data from these broadscale citizen science projects is the patchy

distribution of BSEs across space and time [2,16,17], differing based on the level of structure of

a project [10]. This leaves global citizen science datasets with spatial and temporal gaps and

redundancies [18,19]. Other biases associated with citizen science projects include interob-

server skill differences [20] and taxonomic biases [21,22], influencing the data validation/qual-

ity of a specific citizen science project [23]. Data collection biases can, in some cases, be

minimized with certain statistical techniques [18,24–26]. For example, interobserver skill dif-

ferences can be accounted for in species distribution models [24]. Or sampling strategies and

protocols can be enhanced [18], whereby citizen science projects transform from unstructured

to more structured projects throughout the life of the project [10]. Additionally, data can be fil-

tered or subsampled to deal with error and uneven effort [27,28], pooled among species [29],

and augmented with data with a known sampling effort [30]. More complicated machine

learning and hierarchical clustering techniques also exist, allowing for investigation of the rela-

tive importance of a large number of explanatory variables [31–33]. Generally, sophisticated

methods are preferred to simple methods when accounting for biases in citizen science data

[25,34]. This is especially true for unstructured and semistructured citizen science projects,

which collect some information on potential biases that can then be accounted for. Conversely,
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fewer biases need to be accounted for when using data from structured citizen science projects,

and thus, simpler statistical techniques can be appropriate. But importantly, although some

approaches can deal with biases for particular questions, none of these approaches can ulti-

mately increase the information content in the data. This can only occur in the data collection

process.

Different citizen science projects, based on the level of structure associated with data collec-

tion, necessitate different statistical approaches to minimize bias that arises from patchy biodi-

versity data. As an example, continental- and hemispheric-scale species distribution models

derived using eBird data account for spatial bias by aggregating data in grids [35,36] while

modeling differences in individual observer skill levels [20,24] of those who collect the data.

These data are now being used to produce species-specific range maps with estimates of abun-

dance (e.g., https://ebird.org/science/status-and-trends/). Data from the UK Butterfly Moni-

toring Scheme have produced reliable trend estimates for 62 butterfly species and accounted

for sampling intensity by using a subsampling analysis [15]. There are a variety of methods to

account for biases in citizen science projects at various parts of the data collection protocol.

Biases have been minimized at the time of data collection by providing very structured proto-

cols for projects that target specific monitoring areas and times—e.g., seagrass research [37].

Biodiversity data have been crowdsourced using an incentivized “reputation system” to moti-

vate and reward participants who identify species, and critically, these data were ground-

truthed by professionals, showing a 92% accuracy rate [38]. Hidden Markov models have been

used to identify insect recordings in real time [39]. And many projects generally use active

encouragement to collect large amounts of volunteered geographic information [40].

Characterizing the value of biodiversity sampling events

Given the vast potential of citizen science monitoring schemes [2,41,42], methods to decrease

patchiness and increase information in the data are crucial. Ultimately, this will help improve

the confidence in downstream analyses. We foresee the following points to be critical in order

to improve citizen science sampling for broadscale biodiversity projects:

• shift away from taxa-specific approaches and begin to incentivize looking in space and time,

rather than finding

• implement a conceptual framework and associated algorithms that suggest high-marginal-

value sampling sites to participants

• provide participants with incentive to contribute in the most meaningful manner

Optimal sampling of biodiversity in space and time?

To maximize the value of each citizen scientist’s effort, we first have to answer a key question:

Is a one-off trip to a remote part of the world more valuable than daily observations while

walking a dog? Or, in general terms, what is the marginal value of each event to the overall

project? This is specific to the questions researchers will ask using these data. Are the intended

outcomes of the citizen science project aimed at producing reliable species distribution mod-

els? Or do the outcomes revolve around producing reliable population trends for a given man-

agement area? If the former, then a preference may be placed on homogeneous or stratified

sampling in space, but if the latter, a preference might include less spatial sampling but longer

time series at fewer sites. Inevitably, there are inherent trade-offs in spatial and temporal sam-

pling, depending on the questions of interest. Projects with high spatial resolution of BSEs are

beneficial for species distribution models [43,44], niche breadth [45], biodiversity
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measurements [9,46], and phylogeographical research [47]. Conversely, projects investigating

detection probabilities [48], full-annual-cycle research [49,50], invasive species detection

[51,52], and population trends [53,54] benefit from high-temporal-resolution BSEs.

Regardless of potential questions that will be asked by researchers, or intended goals of a cit-

izen science project, there are some general principles in sampling design—relating to sam-

pling in space and time—that can be applied to improve the structure of the data for many, if

not all, future questions. We will first explore the relatively simplistic case of spatial resolution,

followed by the more complicated instance of temporal resolution, before treating them both

simultaneously.

Spatial resolution

The simplest scenario for sampling global biodiversity would be to distribute BSEs homo-

geneously around the globe. Given species–area relationships [55,56] and the scale dependence

of sampling biodiversity [57], the value of a BSE, given a preexisting set of BSEs, should be

directly proportional to the distance between it and the nearest BSE. In other words, the infor-

mation content that a given BSE adds to a collective dataset would be maximized by the dis-

tance between it and all other BSEs. But biodiversity is not homogeneous around the globe,

and thus, BSEs should be stratified by habitat/biome, relative to overall biodiversity. Further-

more, organisms within and among taxa are not detected equally [58,59], making multiple

BSEs at a given site (i.e., temporal replication) necessary for understanding local biodiversity

[48,60], and habitat/biome definitions are debatable, suggesting that systematic sampling in

space is neither achievable nor desirable.

Temporal resolution

Temporal resolution, by necessity, may be thought of as analogous to an additional spatial

dimension: temporal replication has to take place at a particular site. We do not provide a spe-

cific, rigid definition for site, as the definition will be highly dependent on the specific citizen

science project. At the finest resolution, site could be equated to a particular BSE (i.e., unique

latitude and longitude coordinates), or it could be a management unit of some spatial rele-

vance (e.g., an urban greenspace, national park, county, state). If the latter, then spatial sam-

pling would likely need to be applied within a specific “site” (i.e., multiple BSEs within a

national park would be necessary). For better understanding of biodiversity changes, we

should aim to increase the temporal replication of BSEs at a site. The sampling of every site

can be visualized as a distribution that represents the sampling interval between BSEs. Wide

variation will exist among sites, but the ultimate goal is to achieve a specific desired sampling

interval between BSEs—left-shifting a particular site’s distribution of sampling intervals—or,

in other words, decreasing the median and mean sampling interval for a site. Instead of many

participants (or a single participant) visiting a single, well-sampled site (i.e., pseudoreplica-

tion), the visitation of a site can be optimized so that the tail of the distribution of all sites is

left-shifted. Thus, the value of a BSE at a site would be related to the desired sampling interval

and the time since the last sample. In other words, a BSE at a site that hasn’t been sampled in a

month is marginally more valuable than a BSE at a site that was sampled the previous day,

dependent on the desired sampling interval at a site. Marginal values are dynamic, as new

BSEs are continuously submitted to a citizen science project.

Spatial and temporal resolution

The ultimate goal in the future of broadscale biodiversity citizen science projects should be to

increase spatial resolution while simultaneously increasing temporal replication at sites,
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balancing inherent trade-offs in spatial and temporal resolution. Ultimately, ecological and

conservation outcomes that combine both spatial and temporal data can be achieved [9,61].

And information at spatial and temporal scales are the necessary types of data for broadscale

conservation prioritization.

Forecasting the value of future BSEs

Here, we provide a simple but general framework to forecast the marginal value of future

BSEs. This framework requires a desired outcome: defining which specific information about

a species or group of species is important for conservation or basic science (e.g., species distri-

bution models or trend detection). There could be many desired questions, dependent on spe-

cific management goals. The management goals can also define the species or species pools of

special interest—for example, all migratory birds in a national park or one specific species that

is highly threatened. That goal defines a statistical model, and then, within that model, the con-

tribution of each individual BSE can be quantified using the statistical concept of leverage [62].

High-leverage BSEs are useful for the desired outcome in that they are very important (i.e.,

influential) observations for the model, whereas low-leverage BSEs are less useful. The goal of

future sampling can then be defined precisely: encourage a shift from low-leverage, low-value

BSEs to high-leverage, high-value BSEs.

Of course, the distribution of biodiversity in time and space is not deterministic, and so we

cannot predict the exact leverage of future BSEs. We can, however, predict the “expected lever-

age.” To find this, we look at the past: because the desired outcome is an improved statistical

model, then for past data, it is simple to calculate the leverage for each BSE. To determine the

effect of space and time on statistical leverage in the past, leverage values can be regressed

against a suite of potential spatial and temporal variables, which are likely to influence the out-

comes of the intended statistical model. Examples of forward-looking parameters we find

important in space and time include (1) whether the site was sampled, (2) the distance to the

nearest sampled site, (3) the median sampling interval of BSEs, (4) the median sampling inter-

val of the site’s nearest neighbor, and (5) days since the last BSE at the site. A number of other

variables could also be included in this framework, including observer skill, time of day, and

weather, but we focus on the variables generalized across varied structured to unstructured cit-

izen science projects.

In S1 Text, we present a stepwise approach to calculating these variables and, thus, the mar-

ginal value of a given site in space and time. The actual parametrization of these variables will

depend on the statistical model of interest. For example, for a species distribution model, the

highest-valued BSE is likely to be the furthest away from other BSEs, whereas for phenological

questions, the highest-valued BSEs are likely to be related to the time since the last sample at a

site. In theory, expected high-leverage sites shortly after sampling would become expected

low-leverage sites; then, if they are not sampled through time, the expected leverage creeps

upward again. This process repeats throughout the landscape, providing a dynamic map of

expected BSE values into the future (S1 Text).

A dynamic system of incentives

Our framework would be able to update on a monthly, weekly, daily, or even real-time basis,

dependent on the taxa in question and the participation rates of the citizen science project.

This dynamic aspect of citizen science projects is not novel. Many citizen science projects

dynamically provide feedback to participants [27,63–65], often in the form of leaderboards,

creating either friendly competition or a sense of self-competition by providing participants

with performance feedback [27,66]. These tools may help sustain engagement over time [67],
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and similar approaches of incentivizing more sampling have proven successful with eBird par-

ticipants [68].

In order to maximize observation value, we propose that leaderboards should not dwell on

“total number of records” or “total number of species” but should also incorporate “overall

value of participants’ observations.” One key concern about incentivizing science is to main-

tain data quality while directing effort more productively. To this end, we argue that incentives

should be placed on sampling particular places at particular times, not actually finding specific

species. To date, this is not common practice: other citizen science projects reward finding

particular species (e.g., Questagame; https://questagame.com/). We argue that incentivizing

looking rather than finding would ultimately decrease the ability of participants to “game the

system” [69]. There is less likelihood of biases to exist resulting from individuals preferentially

chasing rare species. We envision an approach that would incentivize the concept of submit-

ting more “valuable” BSEs, encouraging participants to travel to sites that are prioritized based

on the marginal value of a BSE from a specific site. Such an approach could see the following

workflow (Fig 1):

Step 1: Citizen science participants could opt into the “challenge,” protecting privacy concerns.

This ensures that only participants who are interested in participating would potentially get

push notifications and enter potentially sensitive information about where they are willing

to sample (see Step 2).

Step 2: Participants could provide a point (and an associated radius) on a map, indicating their

preferred sampling area from which to submit BSEs. This could be flexible (e.g., intraweek

variation), and when a participant is in a new area (i.e., on a vacation), they could provide

updated areas.

Fig 1. A potential map that users could be presented with, demonstrating the relative value of sites within their

user-specified distance they are willing to sample (the dotted lines). The small circle could represent weekday

sampling, whereas the larger circle could represent weekend sampling. Each site would be dynamically updated based

on other participants’ submitted BSEs (S1 Text). Associated point values could be assigned relative to the priority level,

and these point values could contribute to a “leaderboard” that prescribes scores based on the value of a given BSE. See

here for a dynamic version showing the change in value through time. BSE, biodiversity sampling event.

https://doi.org/10.1371/journal.pbio.3000357.g001
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Step 3: All potential sampling locations within the user-specified sampling domain could be

selected, normalized, and ranked based on the citizen science project’s preferred weighting

of the formula. This could then be presented as a map showing the highest-valued sites. An

important first step would be to use spatial datasets to delineate the boundaries of private

land tenure and sensitive areas, ensuring that participants are not encouraged to trespass

on private property or disturb sensitive habitat. We also envision an approach in which

users could opt in to receive push notifications that provide a ranked list of sites. This

would be dynamically updated based on observations submitted on a given timescale.

Step 4: A given BSE could then be assigned “points,” and a leaderboard displaying the partici-

pant’s value of their submitted BSEs could be developed, encouraging further participation.

Points could be assigned based on the prioritized site list, with the highest prioritized site

receiving the most points, through to the least prioritized site (e.g., S1 Text). All BSEs sub-

mitted could be quantified, whereby any opportunistic BSE still receives a value, but just

proportional to the potential value, should the participant decide to go sample at a site with

the highest marginal value. The leaderboard would need to be normalized to the density of

participants in a given area to keep participants’ scores on a comparable scale.

Working within real-world constraints

Real-world constraints will inevitably limit the move toward optimal sampling of biodiversity

in space and time. First, people are unevenly distributed across the globe, and wealth and liter-

acy of the global population likely influence participation rates in citizen science projects. Sec-

ond, groups of organisms (e.g., birds, fish, invertebrates) vary in their popularity with the

general public both among [21] and within [22] taxa, influencing the level of participation in

citizen science projects. Observations of some species (i.e., those that are less “popular” with

the general public) may, therefore, be more valuable than others, but we do not include a spe-

cies-specific resolution in our framework for assigning value to BSEs, because the species

being detected cannot be predicted. Rather, the probability of a species being detected is a

function of spatial and temporal sampling [70,71]. Third, citizen scientists are also more likely

to sample in convenient locations. Indeed, one reason for the vast success of semistructured

citizen science projects is the relative ease of data collection by the participants (i.e., few proto-

cols to follow). Finally, not all citizen scientists contribute equally valuable contributions. This

results from a difference in skills among observers—which can be accounted for during analy-

ses [20]—and a difference in their dedication to a particular project. Moreover, motivations of

participants vary among projects [72, 73]. For at least a subset of citizen scientists, a primary

motivation of participation is to contribute to science [72, 73], suggesting that these partici-

pants are likely willing to improve their sampling, knowing it would benefit science. And there

are potential education opportunities that can improve participants’ knowledge of how data

are used by citizen science projects [5]. Other participants could be incentivized by providing

“leaderboards” of participants with the most valuable BSEs. Although we cannot account for

all of the above constraints, we can attempt to maximize the collective citizen science effort by

optimizing when and where people sample biodiversity.

Conclusions

Citizen science is mainstream, and research will increasingly use citizen science data at least in

part to increase the spatial and temporal context of our research efforts. But are we maximizing

the absolute power of the vast number of citizen scientists contributing to our collective
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knowledge? We think not. Although we provide intuitive and simplistic conceptualization, we

acknowledge that this is only one way in which to “value” a given citizen scientist’s effort—

which will ultimately be dependent on the project’s design and intended outcomes. Our goal

in writing this piece is simple: we urge those developing and overseeing citizen science projects

to think critically about refining data collection techniques, realizing the full potential for citi-

zen science.

Supporting information

S1 Text. An example of a dynamic system to calculate marginal value. A guide to how we

envision a dynamic system that can be used to calculate the value of BSEs in the future, broken

down by steps, with figures and tables. This is intended as an example of how our framework

could be implemented and is not intended to be prescriptive. We show it for a given, particular

date, but this would be calculated on an updated, dynamic basis. BSE, biodiversity sampling

event.

(PDF)
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2. Chandler M, See L, Copas K, Bonde AM, López BC, Danielsen F, et al. Contribution of citizen science

towards international biodiversity monitoring. Biological Conservation. 2017; 213: 280–294.

3. Dickinson JL, Shirk J, Bonter D, Bonney R, Crain RL, Martin J, et al. The current state of citizen science

as a tool for ecological research and public engagement. Frontiers in Ecology and the Environment.

2012; 10: 291–297.

4. McKinley DC, Miller-Rushing AJ, Ballard HL, Bonney R, Brown H, Cook-Patton SC, et al. Citizen sci-

ence can improve conservation science, natural resource management, and environmental protection.

Biological Conservation. 2017; 208: 15–28.

5. Jordan RC, Gray SA, Howe DV, Brooks WR, Ehrenfeld JG. Knowledge gain and behavioral change in

citizen-science programs. Conservation Biology. 2011; 25: 1148–1154. https://doi.org/10.1111/j.1523-

1739.2011.01745.x PMID: 21967292

6. Starr J, Schweik CM, Bush N, Fletcher L, Finn J, Fish J, et al. Lights, camera. . . citizen science: Assess-

ing the effectiveness of smartphone-based video training in invasive plant identification. PLoS ONE.

2014; 9: e111433. https://doi.org/10.1371/journal.pone.0111433 PMID: 25372597

7. Sullivan BL, Wood CL, Iliff MJ, Bonney RE, Fink D, Kelling S. EBird: A citizen-based bird observation

network in the biological sciences. Biological Conservation. 2009; 142: 2282–2292.

8. Flemons P, Guralnick R, Krieger J, Ranipeta A, Neufeld D. A web-based gis tool for exploring the

world’s biodiversity: The global biodiversity information facility mapping and analysis portal application

(gbif-mapa). Ecological informatics. 2007; 2: 49–60.

9. Pocock MJ, Chandler M, Bonney R, Thornhill I, Albin A, August T, et al. A vision for global biodiversity

monitoring with citizen science. Advances in Ecological Research. 2018; 59: 169–223.

10. Kelling S, Johnston A, Bonn A, Fink D, Ruiz-Gutierrez V, Bonney R, et al. Using semistructured surveys

to improve citizen science data for monitoring biodiversity. BioScience. 2019; 69: 170–179. https://doi.

org/10.1093/biosci/biz010 PMID: 30905970

11. Welvaert M, Caley P. Citizen surveillance for environmental monitoring: Combining the efforts of citizen

science and crowdsourcing in a quantitative data framework. SpringerPlus. 2016; 5: 1890. https://doi.

org/10.1186/s40064-016-3583-5 PMID: 27843747

12. Van Horn G, Mac Aodha O, Song Y, Cui Y, Sun C, Shepard A, et al. The inaturalist species classifica-

tion and detection dataset. In: Proceedings of the IEEE conference on computer vision and pattern rec-

ognition. Salt Lake City, Utah: IEEE; 2018. p. 8769–8778.

13. Prudic KL, McFarland KP, Oliver JC, Hutchinson RA, Long EC, Kerr JT, et al. EButterfly: Leveraging

massive online citizen science for butterfly conservation. Insects. Multidisciplinary Digital Publishing

Institute; 2017; 8: 53.

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000357 June 27, 2019 8 / 11

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000357.s001
https://doi.org/10.1111/gcb.14358
http://www.ncbi.nlm.nih.gov/pubmed/29920854
https://doi.org/10.1111/j.1523-1739.2011.01745.x
https://doi.org/10.1111/j.1523-1739.2011.01745.x
http://www.ncbi.nlm.nih.gov/pubmed/21967292
https://doi.org/10.1371/journal.pone.0111433
http://www.ncbi.nlm.nih.gov/pubmed/25372597
https://doi.org/10.1093/biosci/biz010
https://doi.org/10.1093/biosci/biz010
http://www.ncbi.nlm.nih.gov/pubmed/30905970
https://doi.org/10.1186/s40064-016-3583-5
https://doi.org/10.1186/s40064-016-3583-5
http://www.ncbi.nlm.nih.gov/pubmed/27843747
https://doi.org/10.1371/journal.pbio.3000357


14. Rowley JJL, Callaghan CT, Cutajar T, Portway C, Potter K, Mahony S. FrodID: Citizen scientists pro-

vide validated biodiversity data on australia’s frogs. Herpetological Conservation and Biology. 2019; 14:

155–170.

15. Fox R, Warren MS, Brereton TM, Roy DB, Robinson A. A new red list of british butterflies. Insect Con-

servation and Diversity. 2011; 4: 159–172.

16. Boakes EH, McGowan PJ, Fuller RA, Chang-qing D, Clark NE, O’Connor K, et al. Distorted views of bio-

diversity: Spatial and temporal bias in species occurrence data. PLoS Biol. 2010; 8: e1000385. https://

doi.org/10.1371/journal.pbio.1000385 PMID: 20532234
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